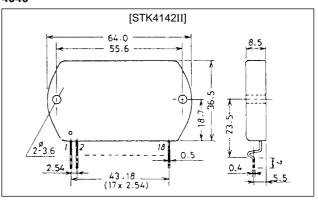

Thick Film Hybrid IC


Features

- The STK4102II series (STK4142II) and STK4101V series (high-grade type) are pin-compatible in the output range of 6W to 50W and enable easy design.
- Small-sized package whose pin assignment is the same as that of the STK4101II series
- Built-in muting circuit to cut off various kinds of pop noise
- Greatly reduced heat sink due to substrate temperature 125°C guaranteed
- Excellent cost performance

Package Dimensions

unit: mm

4040

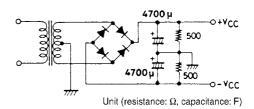
Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		±39	V
Thermal resistance	Өј-с		2.6	°C/W
Junction Temperature	Tj		150	°C
Operating substrate temperature	Tc		125	°C
Storage temperature	Tstg		-30 to +125	°C
Available time for load short-circuit	ts	$V_{CC} = \pm 26V, R_L = 8\Omega, f = 50Hz, Po = 25W$	2	S

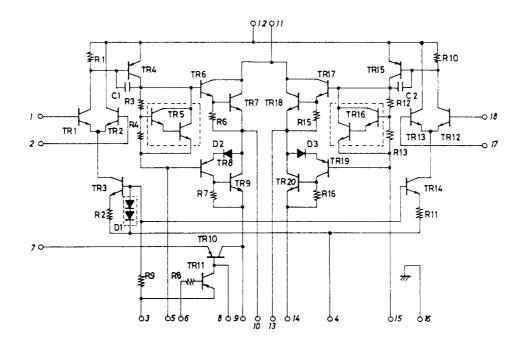
Recommended Operating Conditions at $Ta = 25^{\circ}C$

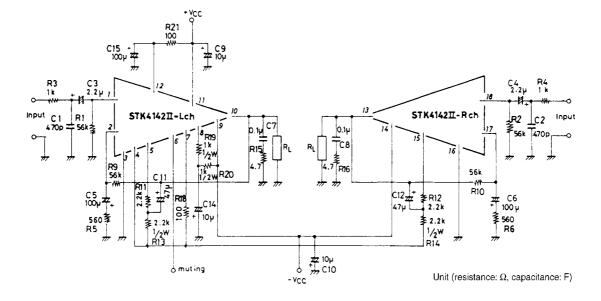
Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC}		±26	V
Load resistance	RL		8	Ω


SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

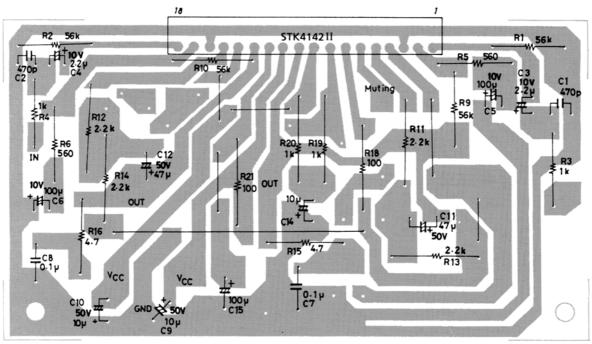
Operating Characteristics	at Ta = 25°C, $V_{CC} = \pm 26V$, $R_L = 8\Omega$, $Rg = 600\Omega$, $VG = 40dB$,
	R _L : non-inductive load

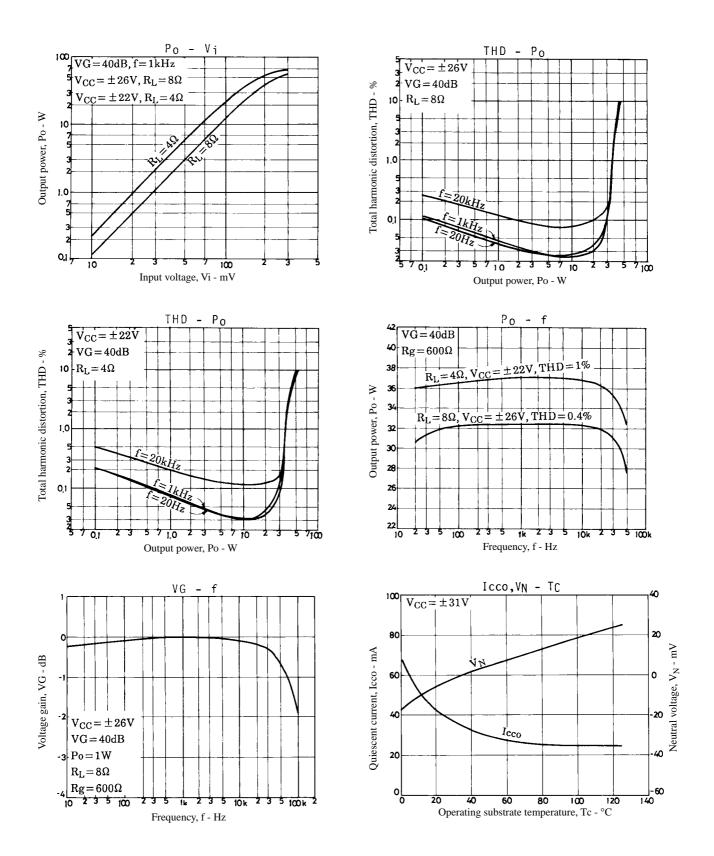
Parameter	Symbol	Conditions	min	typ	max	Unit
Quiescent current	lcco	V _{CC} = ±31V	20	40	100	mA
Output power	Po (1)	THD = 0.4%, f = 20Hz to 20kHz	25			W
	Po (2)	$V_{CC} = \pm 22$ V, THD = 1.0%, R _L = 4 Ω , f = 1kHz	25			W
Total harmonic distortion	THD	Po = 1.0W, f = 1kHz			0.3	%
Frequency response	f _L , f _H	Po = 1.0W, $^{+0}_{-3}$ dB		20 to 50k		Hz
Input impedance	r _i	Po = 1.0W, f = 1kHz		55		kΩ
Output noise voltage	V _{NO}	$V_{CC} = \pm 31V$, Rg = $10k\Omega$			1.2	mVrms
Neutral voltage	V _N	$V_{CC} = \pm 31V$	-70	0	+70	mV
Muting voltage	V _M		-2	-5	-10	V

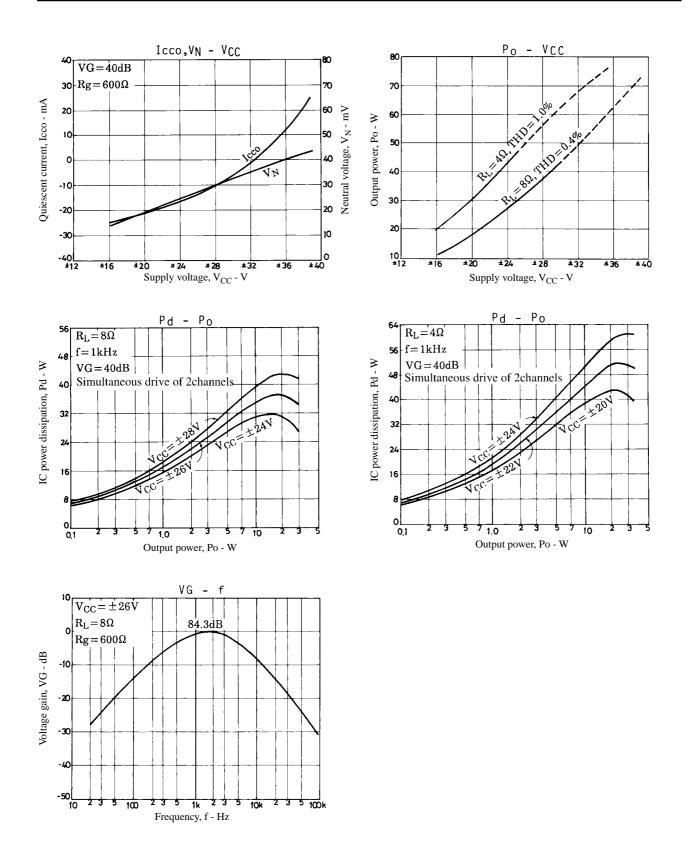

Notes. For power supply at the time of test, use a constant-voltage power supply unless otherwise specified.


For measurement of the available time for load short-circuit and output noise voltage, use the specified transformer power supply shown right. The output noise voltage is represented by the peak value on rms scale (VTVM) of average value indicating type. For AC power supply, use an AC stabilized power supply (50Hz) to eliminate the effect of flicker noise in AC primary line.

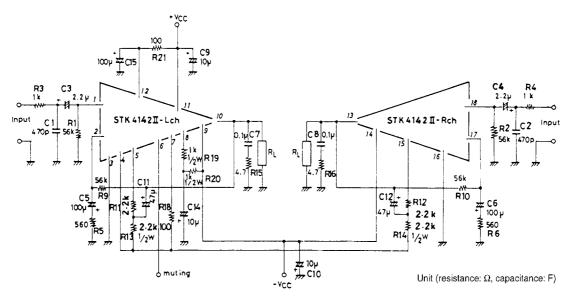
Specified Transformer Power Supply (Equivalent to RP-22)


Equivalent Circuit

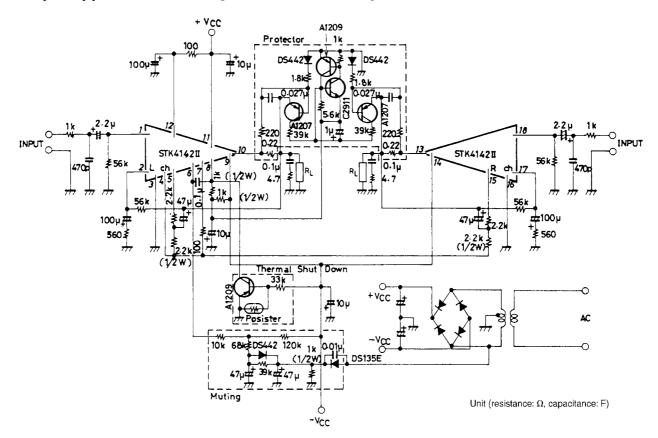



Sample Application Circuit: 25W min 2-channel AF power amplifier

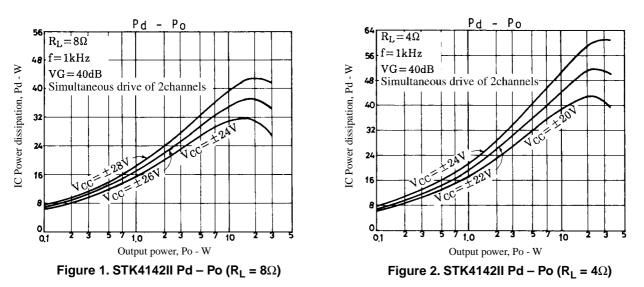
Sample Printed Circuit Pattern for Application Circuit (Cu-foiled side)



Unit (resistance: Ω, capacitance: F)



Description of External Parts


C3, C4Input coupling capacitors • Used to block DC current. When the reactance of the capacitor increases at low frequencies, the dependence of 1/f noise on signal source resistance causes the output noise to worsen. It is better to decrease the reactance. • To reduce the pop noise at the time of application of power, it is effective to increase C3, C4 that fix the time constant on the input side and to decrease C5, C6 on the N° side.C5, C6IF $\frac{1}{2\pi \cdot C5 \cdot R5}$ [Hz] To provide the desired voltage gain at tw frequencies, it is better to increase C5. However, do not increase C5 more than needed because the pop noise level becomes higher at the time of application of power.C15Decoupling capacitor • Used to eliminate the ripple components that mix into the input side from the power line (+V _{CC}).C11, C12Sociatrap capacitor • When the capacitor value is decreased, the distortion is liable to be higher at low frequencies.C3, C4- Capacitor for the IPD components that mix into the input side from the power supply impedance is decreased to operate the IC stably. • Electrolytic capacitors • When the capacitor value is decreased, the distortion is liable to be higher at low frequencies.C3, C10• Must be inserted as close to the IC power supply pins as possible so that the power supply impedance is decreased to operate the IC stably. • Electrolytic capacitors for the IPD used ripple filter • Legacitor for the IPD used ripple filter in the IC systemC7• Capacitor for the IPD used ripple filter in the IC systemC8R6, R01R11, R2Ipple tiber exeistors (N, It described to change R6 (or R6). • Noise the four point potential to zero. These resistors fix the input impedance practically.R11, R13Boot	C1, C2	Input filter capacitors A filter formed with R3 or R4 can be used to reduce noise at high frequencies.
•These capacitors fix the low cutoff frequency as shown below.C5, C6 $f_L = \frac{1}{2\pi \cdot C5 \cdot R5}$ $f_L = \frac{1}{2\pi \cdot C5 \cdot R5}$ [Hz]To provide the desired voltage gain at low frequencies, it is better to increase C5. However, do not increase C5 more than needed because the pop noise level becomes higher at the time of application of power.C15Decoupling capacitor •Used to eliminate the ripple components that mix into the input side from the power line (+V _{CC}).C11, C12Bootstrap capacitors •When the capacitor value is decreased, the distortion is liable to be higher at low frequencies.C9, C10Oscillation blocking capacitors •Must be inserted as close to the IC power supply pins as possible so that the power supply impedance is decreased to operate the IC stably. •Electrolytic capacitors for the TR10-used ripple filter in the IC systemC7Oscillation blocking capacitor •Capacitor for the TR10-used ripple filter in the IC systemR1, R2Input bias resistors •Used to bias the input pin potential to zero. These resistors fix the input impedance practically.R1, R3Bootstrap resistors •Used to bias the input pin potential to zero. These resistors for VG = 40dB. •To adjust VG, it is desirate to change R5 (or R8). •Vhen R5 (or R6) is changed to adjust VG, R1 (=R2) = R9 (=R10) must be set to ensure V _N balance.R21Resistor for ripple filter •Used to alias the input missed to adjust VG, R1 (=R2) = R9 (=R10) must be set to ensure V _N balance.R21Resistor for ripple filter •Used to alias the input ming R5 (or R8). •Vhen R5 (or R6) is changed to adjust VG, R1 (=R2) = R9 (=R10) must be set to ensure V _N balance.R21Resistor for ripple filter •Usen muting TR1 is	C3, C4	 Used to block DC current. When the reactance of the capacitor increases at low frequencies, the dependence of 1/f noise on signal source resistance causes the output noise to worsen. It is better to decrease the reactance. To reduce the pop noise at the time of application of power, it is effective to increase C3, C4 that fix the time constant on the input side and
C15 • Used to aliminate the ripple components that mix into the input side from the power line (+V _{CC}). C11, C12 Bootstrap capacitors • When the capacitor value is decreased, the distortion is liable to be higher at low frequencies. C9, C10 Oscillation blocking capacitors • Usub is inserted as close to the IC power supply pins as possible so that the power supply impedance is decreased to operate the IC stably. • Electrolytic capacitor for ripple filter • Capacitor for the TR10-used ripple filter in the IC system C14 Capacitor for the TR10-used ripple filter in the IC system C7 Oscillation blocking capacitor • A polyester film capacitor, being excellent in temperature characteristic, frequency characteristic, is recommended for C7. R3, R4 Resistors for input filter nput bias resistors • Used to bias the input pin potential to zero. These resistors fix the input impedance practically. R5, R9 These resistors fix voltage gain VG. It is recommended to use R5 (R6). • Used to adjust VG, it is elsriable to change R5 (or R6). • When R5 (or R6) is changed to adjust VG, R1 (=R2) =R9 (=R10) must be set to ensure V _N balance. R11, R13 Bootstrap resistors R21 Resistor for ripple filter • (Limiting resistor for predriver transistor at the time of load short) R18 Used to ensure plus/minus balance at the time of clip. R19, R20 When muting TR11 is turned ON, current flows from ground to -V _{CC} through TR 11. It is recommended to use 1kΩ (1/2W) + 1kΩ (C5, C6	• These capacitors fix the low cutoff frequency as shown below. $f_{L} = \frac{1}{2\pi \cdot C5 \cdot R5} [Hz]$ To provide the desired voltage gain at low frequencies, it is better to increase C5. However, do not increase C5 more than needed because
C11, C12 • When the capacitor value is decreased, the distortion is liable to be higher at low frequencies. C9, C10 Oscillation blocking capacitors • Must be inserted as close to the IC power supply pins as possible so that the power supply impedance is decreased to operate the IC stably. • Electrolytic capacitors are recommended for C9, C10. C14 • Capacitor for ripple filter • Capacitor for ripple specifier C7 Oscillation blocking capacitor • A polyester film capacitor, being excellent in temperature characteristic, frequency characteristic, is recommended for C7. R3, R4 Resistors for input filter R1, R2 Input bias resistors • Used to bias the input pin potential to zero. These resistors fix the input impedance practically. R6, R10 These resistors fix voltage gain VG. • It is recommended to see R5 (R6) = 5602, R9 (R10) = 56kΩ for VG = 40dB. • To adjust VG, it is desirable to change R5 (or R6). • When R5 (or R6) is changed to adjust VG, R1 (=R2) = R9 (=R10) must be set to ensure V _N balance. R11, R13 Bootstrap resistors (R12, R14) • The quiescent current is set by these resistors 2.2kΩ + 2.2kΩ. It is recommended to use this resistor value. R21 Resistor for ripple filter • (Limiting resistor for predriver transistor at the time of clip. R18 Used to ensure plus/minus balance at the time of clip. R19, R20 Resistor for ripple filter • When muting TR11 is turned ON, current flows from ground to -V _{CC} through TR 11. It is recommended to use 1kΩ (1/2W) + 1kΩ (1/2W) allowing	C15	
C9, C10 •Must be inserted as close to the IC power supply pins as possible so that the power supply impedance is decreased to operate the IC stably. C14 Capacitor for ripple filter •C14 Capacitor for the TR10-used ripple filter in the IC system C7 Oscillation blocking capacitor, being excellent in temperature characteristic, frequency characteristic, is recommended for C7. R3, R4 Resistors for input filter R1, R2 ·lused to bias the input pin potential to zero. These resistors fix the input impedance practically. These resistors fix voltage gain VG. It is recommended to use R5 (R6) = 560Ω, R9 (R10) = 56kΩ for VG = 40dB. (R6, R10) ·To adjust VG, it is desirable to change R5 (or R6). •When R5 (or R6) is changed to adjust VG, R1 (=R2) =R9 (=R10) must be set to ensure V _N balance. R11, R13 Bootstrap resistors (R12, R14) •The quiescent current is set by these resistors 2.2kΩ + 2.2kΩ. It is recommended to use this resistor value. R21 Resistor for ripple filter •(Limiting resistor for predriver transistor at the time of clip. R18 Used to ensure plus/minus balance at the time of clip. R19, R20 Resistor for ripple filter •(Umiting resistor for ripple filter •(Umiting resistor for ripple filter •(Umiting resistor for predriver tran	C11, C12	
C14• Capacitor for the TR10-used ripple filter in the IC systemC7Oscillation blocking capacitor • A polyester film capacitor, being excellent in temperature characteristic, frequency characteristic, is recommended for C7.R3, R4Resistors for input filterR1, R2Input bias resistors • Used to bias the input pin potential to zero. These resistors fix the input impedance practically.R5, R9 (R6, R10)These resistors fix voltage gain VG. It is recommended to use R5 (R6) = 560\Omega, R9 (R10) = 56k\Omega for VG = 40dB. • To adjust VG, it is desirable to change R5 (or R6). • When R5 (or R6) is changed to adjust VG, R1 (=R2) =R9 (=R10) must be set to ensure V _N balance.R11, R13 (R12, R14)Bootstrap resistors • The quiescent current is set by these resistors 2.2kΩ + 2.2kΩ. It is recommended to use this resistor value.R21Resistor for ripple filter • (Limiting resistor for predriver transistor at the time of load short)R18Used to ensure plus/minus balance at the time of clip.R19, R20Resistor for ripple filter • When muting TR11 is turned ON, current flows from ground to -V _{CC} through TR 11. It is recommended to use 1kΩ (1/2W) + 1kΩ (1/2W) allowing for the power that may be dissipated on that occasion.	C9, C10	• Must be inserted as close to the IC power supply pins as possible so that the power supply impedance is decreased to operate the IC stably.
C1• A polyester film capacitor, being excellent in temperature characteristic, frequency characteristic, is recommended for C7.R3, R4Resistors for input filterR1, R2Input bias resistors • Used to bias the input pin potential to zero. These resistors fix the input impedance practically.R5, R9 (R6, R10)These resistors fix voltage gain VG. It is recommended to use R5 (R6) = 560Ω, R9 (R10) = 56kΩ for VG = 40dB. • To adjust VG, it is desirable to change R5 (or R6). • When R5 (or R6) is changed to adjust VG, R1 (=R2) =R9 (=R10) must be set to ensure V _N balance.R11, R13 (R12, R14)Bootstrap resistors • The quiescent current is set by these resistors 2.2kΩ + 2.2kΩ. It is recommended to use this resistor value.R21Resistor for ripple filter • (Limiting resistor for predriver transistor at the time of load short)R18Used to ensure plus/minus balance at the time of clip.R19, R20Resistor for ripple filter • When muting TR11 is turned ON, current flows from ground to -V _{CC} through TR 11. It is recommended to use 1kΩ (1/2W) + 1kΩ (1/2W)	C14	
R1, R2Input bias resistors • Used to bias the input pin potential to zero. These resistors fix the input impedance practically.R5, R9 (R6, R10)These resistors fix voltage gain VG. It is recommended to use R5 (R6) = 560 Ω , R9 (R10) = 56k Ω for VG = 40dB. • To adjust VG, it is desirable to change R5 (or R6). • When R5 (or R6) is changed to adjust VG, R1 (=R2) =R9 (=R10) must be set to ensure V _N balance.R11, R13 (R12, R14)Bootstrap resistors 	C7	5 1
R1, R2• Used to bias the input pin potential to zero. These resistors fix the input impedance practically.R5, R9 (R6, R10)These resistors fix voltage gain VG. It is recommended to use R5 (R6) = 560Ω, R9 (R10) = 56kΩ for VG = 40dB. • To adjust VG, it is desirable to change R5 (or R6). • When R5 (or R6) is changed to adjust VG, R1 (=R2) = R9 (=R10) must be set to ensure V _N balance.R11, R13 (R12, R14)Bootstrap resistors • The quiescent current is set by these resistors 2.2kΩ + 2.2kΩ. It is recommended to use this resistor value.R21Resistor for ripple filter • (Limiting resistor for predriver transistor at the time of load short)R18Used to ensure plus/minus balance at the time of clip.R19, R20Resistor for ripple filter • When muting TR11 is turned ON, current flows from ground to -V _{CC} through TR 11. It is recommended to use 1kΩ (1/2W) + 1kΩ (1/2W) allowing for the power that may be dissipated on that occasion.	R3, R4	Resistors for input filter
R5, R9 (R6, R10)It is recommended to use R5 (R6) = 560Ω, R9 (R10) = 56kΩ for VG = 40dB. • To adjust VG, it is desirable to change R5 (or R6). • When R5 (or R6) is changed to adjust VG, R1 (=R2) =R9 (=R10) must be set to ensure V _N balance.R11, R13 (R12, R14)Bootstrap resistors • The quiescent current is set by these resistors 2.2kΩ + 2.2kΩ. It is recommended to use this resistor value.R21Resistor for ripple filter • (Limiting resistor for predriver transistor at the time of load short)R18Used to ensure plus/minus balance at the time of clip.R19, R20Resistor for ripple filter • When muting TR11 is turned ON, current flows from ground to -V _{CC} through TR 11. It is recommended to use 1kΩ (1/2W) + 1kΩ (1/2W) allowing for the power that may be dissipated on that occasion.	R1, R2	
(R12, R14) • The quiescent current is set by these resistors 2.2kΩ + 2.2kΩ. It is recommended to use this resistor value. R21 Resistor for ripple filter • (Limiting resistor for predriver transistor at the time of load short) R18 Used to ensure plus/minus balance at the time of clip. R19, R20 Resistor for ripple filter • When muting TR11 is turned ON, current flows from ground to -V _{CC} through TR 11. It is recommended to use 1kΩ (1/2W) + 1kΩ (1/2W) allowing for the power that may be dissipated on that occasion.	· ·	It is recommended to use $R5$ (R6) = 560 Ω , R9 (R10) = 56k Ω for VG = 40dB. • To adjust VG, it is desirable to change R5 (or R6).
R21 • (Limiting resistor for predriver transistor at the time of load short) R18 Used to ensure plus/minus balance at the time of clip. R19, R20 Resistor for ripple filter • When muting TR11 is turned ON, current flows from ground to -V _{CC} through TR 11. It is recommended to use 1kΩ (1/2W) + 1kΩ (1/2W) allowing for the power that may be dissipated on that occasion.	· ·	
R19, R20 Resistor for ripple filter • When muting TR11 is turned ON, current flows from ground to $-V_{CC}$ through TR 11. It is recommended to use 1k Ω (1/2W) + 1k Ω (1/2W) allowing for the power that may be dissipated on that occasion.	R21	
R19, R20 • When muting TR11 is turned ON, current flows from ground to $-V_{CC}$ through TR 11. It is recommended to use $1k\Omega (1/2W) + 1k\Omega (1/2W)$ allowing for the power that may be dissipated on that occasion.	R18	Used to ensure plus/minus balance at the time of clip.
R15, R16 Oscillation blocking resistors	R19, R20	• When muting TR11 is turned ON, current flows from ground to -V _{CC} through TR 11. It is recommended to use 1kΩ (1/2W) + 1kΩ (1/2W)
	R15, R16	Oscillation blocking resistors

Sample Application Circuit (protection circuit and muting circuit)

Thermal Design

The IC power dissipation of the STK4142II at the IC-operated mode is 37.2W max. at load resistance 8Ω and 51.8W max. at load resistance 4Ω (simultaneous drive of 2 channels) for continuous sine wave as shown in Figure 1 and 2.

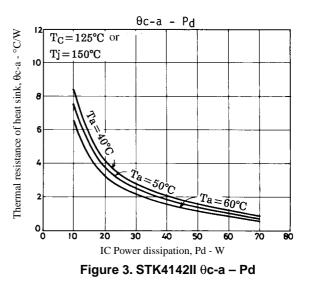
In an actual application where a music signal is used, it is impractical to estimate the power dissipation based on the continuous signal as shown above, because too large a heat sink must be used. It is reasonable to estimate the power dissipation as 1/10 Po max. (EIAJ).

That is, Pd = 23.6W at 8Ω , Pd = 28.2W at 4Ω

Thermal resistance θ c-a of a heat sink for this IC power dissipation (Pd) is fixed under conditions 1 and 2 shown below.

Condition 1: $Tc = Pd \times \theta c - a + Ta \le 125^{\circ}C$(1) where Ta: Specified ambient temperature Tc: Operating substrate temperature

Condition 2: $Tj = Pd \times (\theta c-a) + Pd/4 \times (\theta c-a) + Ta \le 150^{\circ}C$ (2) where Tj: Junction temperature of power transistor


Assuming that the power dissipation is shared equally among the four power transistors (2 channels \times 2), thermal resistance θj -c is 2.6°C/W and

$$Pd \times (\theta c - a + 2.6/4) + Ta \le 150^{\circ}C$$
.....(3)

Thermal resistance θ c-a of a heat sink must satisfy inequalities (1) and (3).

Figure 3 shows the relation between Pd and θ c-a given from (1) and (3) with Ta as a parameter.

$$\label{eq:constraint} \begin{split} \mbox{[Example]} & \mbox{The thermal resistance of a heat sink is} \\ & \mbox{obtained when the ambient temperature specified for a stereo amplifier is 50°C.} \\ & \mbox{Assuming $V_{CC} = \pm 26V$, $R_L = 8\Omega$, $V_{CC} = \pm 22V$, $R_L = 4\Omega$, $R_L = 8\Omega$: Pd1 = 23.6W at 1/10 Po max. $R_L = 4\Omega$: Pd2 = 28.2W at 1/10 Po max. $The thermal resistance of a heat sink is obtained from Figure 3. $R_L = 8\Omega$: θc-a1 = 3.18°C/W$ $R_L = 4\Omega$: θc-a2 = 2.66°C/W$ Tj when a heat sink is used is obtained from (3). $R_L = 8\Omega$: $Tj = 140.4°C$ $R_L = 4\Omega$: $Tj = 143.4°C$ $Tj = 143.4°C$ } \end{split}$$

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - O Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees, jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of July, 1997. Specifications and information herein are subject to change without notice.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.