

DUAL OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

NJM2100 is a low supply voltage and low saturation output voltage ($\pm 2.0 V_{P.P}$ at supply voltage $\pm 2.5 V$) operational amplifier. It is applicable to handy type CD, radio cassette CD, and portable DAT, that are digital audio apparatus that require the 5V single supply operation and high output voltage.

■ PACKAGE OUTLINE

NJM2100D

NJM2100M

■ FEATURES

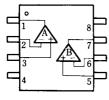
• Single Supply Operation

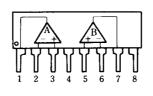
• Operating Voltage (±1.0V~±3.5V)

• Low Saturation Output Voltage

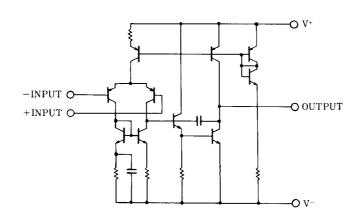
• High Slew Rate (4V/µs typ.)

Package Outline
 DIP8,DMP8,SIP8,SSOP8


• Bipolar Technology


NJM2100V

■ PIN CONFIGURATION


NJM2100D NJM2100M NJM2100V

NJM2100L

PIN FUNCTION
1.A OUTPUT
2.A –INPUT
3.A +INPUT
4.V
5.B +INPUT
6.B –INPUT
7.B OUTPUT
8.V

■ EQUIVALENT CIRCUIT (1/2 Shown)

■ ABSOLUTE MAXIMUM RATINGS

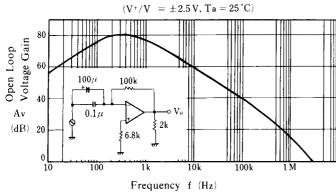
(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺ /V ⁻	± 3.5	V
Differential Input Voltage	V_{ID}	± 7	V
Input Voltage	V _{IC}	± 3.5	V
Power Dissipation	P _D	(DIP8) 500 (DMP8) 300 (SSOP8) 250 (SIP8) 800	mW
Operating Temperature Range	T _{opr}	-40~+85	°C
Storage Temperature Range	T _{stg}	-40~+125	°C

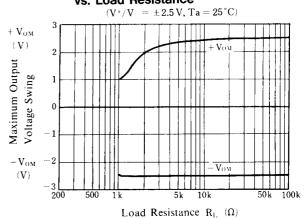
■ ELECTRICAL CHARACTERISTICS

(Ta=25°C,V⁺=5V)

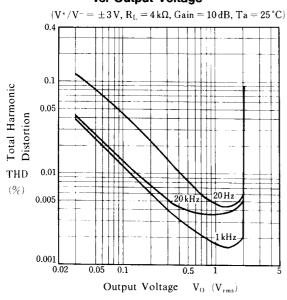
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	R _S ≤10kΩ	-	1	6	mV
Input Bias Current	I_{IB}		-	100	300	nA
Large Signal Voltage Gain	A_V	R _L ≥10kΩ	60	80	-	dB
Maximum Output Voltage Swing	V_{OM}	R _L ≥2.5kΩ	±2	± 2.2	-	V
Input Common Mode Voltage Range	V_{ICM}		± 1.5	-	-	V
Common Mode Rejection Ratio	CMR		60	74	-	dB
Supply Voltage Rejection Ratio	SVR		60	80	-	dB
Operating Current	Icc	V _{IN} =0,R _L =∞	-	3.5	5	mA
Slew Rate	SR	$A_V=1,V_{IN}=\pm 1V$	-	4	-	V/µs
Gain Bandwidth Product	GB	f=10kHz	-	12	-	MHz

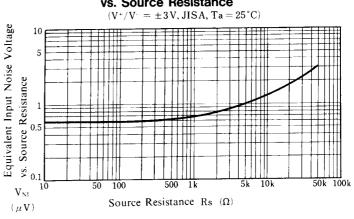

⁽ Note1) Applied circuit voltage gain is desired to operate within the range of 3dB to 30 dB.

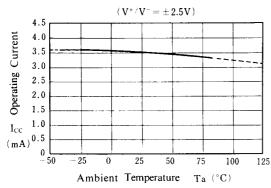
⁽ Note2) Special care being required for input common mode voltage range and the oscillation due to the capacitive load when operating on voltage follower.


⁽ Note3) Special care being required for the oscillation, yet having the gain when the supply voltage is applied at more than 5V (single supply voltage 5V).

■ TYPICAL CHARACTERISTICS

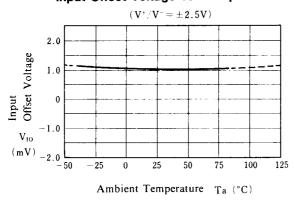

Open Loop Voltage Gain vs. Frequency


Maximum Output Voltage Swing vs. Load Resistance

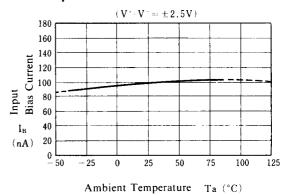

Total Harmonic Distortion vs. Output Voltage

Equivalent Input Noise Voltage vs. Source Resistance

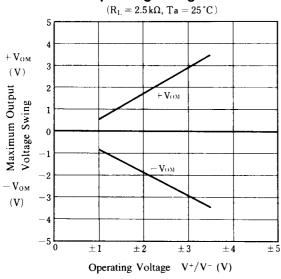
Operating Current vs. Temperature

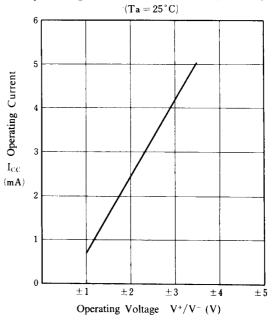


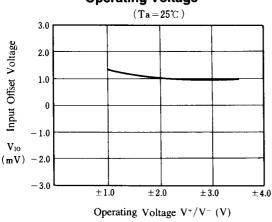
Maximum Output Voltage Swing vs. Temperature

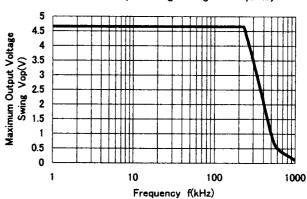


■ TYPICAL CHARACTERISTICS


Input Offset Voltage vs. Temperature


Input Bias Current vs. Temperature


Maximum Output Voltage Swing vs. Operating Voltage


Operating Current vs. Operating Voltage

Input Offset Voltage vs. Operating Voltage

Maximum Output Voltage Swing vs. Frequency

[CAUTION]
The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.